AI use in clinical diagnosis
Posted 19th February 2021 by Nicholas Noakes
Deep learning tool predicts tumour expression from whole slide images
A deep learning model to predict RNA-Seq expression of tumours from whole slide images was among the industry innovations outlined at the 7th Digital Pathology and AI Congress for Europe. Created by French-American start-up Owkin, the detail of how the company’s HE2RNA model provides virtual spatialization of gene expression was detailed to online delegates by senior translational scientist Alberto Romagnoni who highlighted its use in clinical diagnosis. During his presentation, delegates heard how Owkin has collaborated with doctors, hospitals and academic institutions to develop the tool.
Machine learning advances diagnostics and prognostics
Posted 10th February 2021 by Nicholas Noakes
Computerized image analysis can predict cancer outcomes
The advent of digital pathology is offering a unique opportunity to develop computerized image analysis methods to diagnose disease and predict outcomes for cancer patients from histopathology tissue sections. Such advances can help predict the risk of recurrence, disease aggressiveness and long-term survival, according to a leading expert in the field, Professor Anant Madabhushi from Case Western Reserve University in Ohio.
Automatic AI-powered Tumor Budding
Posted 27th April 2020 by Liv Sewell
Tumor Budding has been shown in numerous studies to be an independent prognostic factor in colorectal cancer (CRC) for the risk of distant metastasis and, in stage II CRC, for overall survival. Fraunhofer IIS and the Institute for Pathology, University Hospital Erlangen are developing an AI system to automatically detect tumor budding in CRC patients.
Taking biomarker research to a new level
Posted 21st October 2019 by Liv Sewell
Ahead of the 6th Digital Pathology and AI Congress: Europe in December, we are revisiting Professor Inti Zlobec’s research, presented at last year’s Congress, which is opening a whole field of digital pathology research. Zlobec’s research applies the latest digital pathology technology to produce high-quality tissue microarrays for biomarker analysis.
Bridging the gap between pathologist and algorithm
Posted 16th October 2019 by Liv Sewell
Could AI replace pathologists? As we look forward to the 6th Digital Pathology and AI Congress: Europe on the 5th – 6th December 2019, we look back at Dr Hamid Tizhoosh’s keynote presentation from last year.